| Интеграл | Равенство |
| \[\int{kdx}\] | \[kx+C\] |
| \[\int{x^ndx}\] | \[\frac{x^{n+1}}{n+1}+C\] |
| \[\int{\frac{dx}{x}}\] | \[ln|x|+C\] |
| \[\int{a^xdx}\] | \[\frac{a^x}{ln(a)}+C\] |
| Интеграл | Равенство |
| \[\int{sin(x)}dx\] | \[-cos(x)+C\] |
| \[\int{cos(x)}dx\] | \[sin(x)+C\] |
| \[\int{tg(x)}dx\] | \[-ln|cos(x)|+C\] |
| \[\int{ctg(x)}dx\] | \[ln|sin(x)|+C\] |
| Интеграл | Равенство |
| \[\int{\frac{dx}{cos^2(x)}}\] | \[tg(x)+C\] |
| \[\int{\frac{dx}{sin^2(x)}}\] | \[-ctg(x)+C\] |
| \[\int{\frac{dx}{sin(x)}}\] | \[ln|tg(\frac{x}{2})|+C\] |
| \[\int{\frac{dx}{cos(x)}}\] | \[ln|tg(\frac{x}{2}+\frac{\pi}{4})|+C\] |
| Интеграл | Равенство |
| \[\int{\frac{dx}{\sqrt{a^2-x^2}}}\] | \[arcsin(\frac{x}{a})+C\] |
| \[\int{\frac{dx}{\sqrt{a+x^2}}}\] | \[ln|x+\sqrt{a+x^2}|+C\] |
| \[\int{\frac{dx}{a^2+x^2}}\] | \[\frac{1}{a}arctg(\frac{x}{a})+C\] |
| \[\int{\frac{dx}{a^2-x^2}}\] | \[\frac{1}{2a}ln|\frac{a+x}{a-x}|+C\] |
| Интеграл | Равенство |
| \[\int{sh(x)dx}\] | \[ch(x)+C\] |
| \[\int{ch(x)dx}\] | \[sh(x)+C\] |
| \[\int{th(x)dx}\] | \[ln|ch(x)|\] |
| \[\int{cth(x)dx}\] | \[ln|sh(x)|\] |
| Правило | Равенство |
| \[\int{(u+v)dx}\] | \[\int{udx}+\int{vdx}\] |
| \[\int{kudx}\] | \[k\int{udx}\] |
| \[\int{udv}\] | \[uv-\int{vdu}\] |
| \[\int{f(\phi(x))\phi\\'(x)dx}\] | \[\int{f(\phi(x))d\phi(x)}\] |
| Интеграл | Равенство |
| \[\int{arcsin(x)dx}\] | \[x\cdot arcsin(x)+\sqrt{1-x^2}+C\] |
| \[\int{arccos(x)dx}\] | \[x\cdot arcsin(x)-\sqrt{1-x^2}+C\] |
| \[\int{arctg(x)dx}\] | \[x\cdot arctg(x)-\frac{1}{2}ln(1+x^2)+C\] |
| \[\int{arcctg(x)dx}\] | \[x\cdot arcctg(x)+\frac{1}{2}ln(1+x^2)+C\] |
| Универсальная триг. подстановка |
| \[x=2arctg(t), dx=\frac{2dt}{1+t^2}\] \[sin(x)=\frac{2t}{1+t^2}, сos(x)=\frac{1-t^2}{1+t^2}\] |
| \[\text{Нечет. от-но } sin(x)->t=cos(x)\] \[\text{Нечет. от-но } cos(x)->t=sin(x)\] \[cos(x)=sin(x)=\sqrt{1-t^2}\] |
| \[\text{Нечет. от-но } tg(x) \text{ или}\] \[\text{Степени sin + cos чёт. }\] \[x=arctg(t), dx=\frac{dt}{1+t^2}\] \[cos^2(x)=\frac{1}{1+t^2}, sin^2(x)=\frac{t^2}{1+t^2}\] |
| Триганометрические формулы |
| \[cos(a)cos(b)=\frac{1}{2}(cos(a+b)+cos(a-b))\] \[sin(a)sin(b)=\frac{1}{2}(cos(a-b)-cos(a+b))\] \[sin(a)cos(b)=\frac{1}{2}(sin(a+b)+sin(a-b))\] \[sin^2(x)=\frac{1}{2}(1-cos(2x))\] \[cos^2(x)=\frac{1}{2}(1+cos(2x))\] |