Интеграл Равенство
\[\int{kdx}\] \[kx+C\]
\[\int{x^ndx}\] \[\frac{x^{n+1}}{n+1}+C\]
\[\int{\frac{dx}{x}}\] \[ln|x|+C\]
\[\int{a^xdx}\] \[\frac{a^x}{ln(a)}+C\]
Интеграл Равенство
\[\int{sin(x)}dx\] \[-cos(x)+C\]
\[\int{cos(x)}dx\] \[sin(x)+C\]
\[\int{tg(x)}dx\] \[-ln|cos(x)|+C\]
\[\int{ctg(x)}dx\] \[ln|sin(x)|+C\]
Интеграл Равенство
\[\int{\frac{dx}{cos^2(x)}}\] \[tg(x)+C\]
\[\int{\frac{dx}{sin^2(x)}}\] \[-ctg(x)+C\]
\[\int{\frac{dx}{sin(x)}}\] \[ln|tg(\frac{x}{2})|+C\]
\[\int{\frac{dx}{cos(x)}}\] \[ln|tg(\frac{x}{2}+\frac{\pi}{4})|+C\]
Интеграл Равенство
\[\int{\frac{dx}{\sqrt{a^2-x^2}}}\] \[arcsin(\frac{x}{a})+C\]
\[\int{\frac{dx}{\sqrt{a+x^2}}}\] \[ln|x+\sqrt{a+x^2}|+C\]
\[\int{\frac{dx}{a^2+x^2}}\] \[\frac{1}{a}arctg(\frac{x}{a})+C\]
\[\int{\frac{dx}{a^2-x^2}}\] \[\frac{1}{2a}ln|\frac{a+x}{a-x}|+C\]
Интеграл Равенство
\[\int{sh(x)dx}\] \[ch(x)+C\]
\[\int{ch(x)dx}\] \[sh(x)+C\]
\[\int{th(x)dx}\] \[ln|ch(x)|\]
\[\int{cth(x)dx}\] \[ln|sh(x)|\]
Правило Равенство
\[\int{(u+v)dx}\] \[\int{udx}+\int{vdx}\]
\[\int{kudx}\] \[k\int{udx}\]
\[\int{udv}\] \[uv-\int{vdu}\]
\[\int{f(\phi(x))\phi\\'(x)dx}\] \[\int{f(\phi(x))d\phi(x)}\]
Интеграл Равенство
\[\int{arcsin(x)dx}\] \[x\cdot arcsin(x)+\sqrt{1-x^2}+C\]
\[\int{arccos(x)dx}\] \[x\cdot arcsin(x)-\sqrt{1-x^2}+C\]
\[\int{arctg(x)dx}\] \[x\cdot arctg(x)-\frac{1}{2}ln(1+x^2)+C\]
\[\int{arcctg(x)dx}\] \[x\cdot arcctg(x)+\frac{1}{2}ln(1+x^2)+C\]
Универсальная триг. подстановка
\[x=2arctg(t), dx=\frac{2dt}{1+t^2}\] \[sin(x)=\frac{2t}{1+t^2}, сos(x)=\frac{1-t^2}{1+t^2}\]
\[\text{Нечет. от-но } sin(x)->t=cos(x)\] \[\text{Нечет. от-но } cos(x)->t=sin(x)\] \[cos(x)=sin(x)=\sqrt{1-t^2}\]
\[\text{Нечет. от-но } tg(x) \text{ или}\] \[\text{Степени sin + cos чёт. }\] \[x=arctg(t), dx=\frac{dt}{1+t^2}\] \[cos^2(x)=\frac{1}{1+t^2}, sin^2(x)=\frac{t^2}{1+t^2}\]
Триганометрические формулы
\[cos(a)cos(b)=\frac{1}{2}(cos(a+b)+cos(a-b))\] \[sin(a)sin(b)=\frac{1}{2}(cos(a-b)-cos(a+b))\] \[sin(a)cos(b)=\frac{1}{2}(sin(a+b)+sin(a-b))\] \[sin^2(x)=\frac{1}{2}(1-cos(2x))\] \[cos^2(x)=\frac{1}{2}(1+cos(2x))\]
\[\int u v \, dx = u \int v \, dx - \int \left( \int v \, dx \right) u' \, dx\]